Just checking the logic.
In [2]:
from dcprogs.likelihood import plot_time_series
from dcprogs.likelihood.random import time_series as random_time_series
perfect, series = random_time_series(N=100, n=100, tau=1)
print(perfect)
plot_time_series(perfect)
plot_time_series(series, ax=gca(), marker='*', color='k', linestyle=':')
display(gcf())
In [3]:
from dcprogs.likelihood import time_filter as cpp_time_filter
filtered = cpp_time_filter(series, 1)
plot_time_series(perfect)
plot_time_series(filtered, ax=gca(), marker='*', color='k', linestyle=':')
display(gcf())
Now, computes the likelihood of this time series for a random QMatrix